1. Find $f'(x)$, do not simplify your answer.

$$f(x) = (4x^2 - \sin(x))(\cos(x) + x^3 - x + 1)$$

Solution:

$$f'(x) = (4x^2 - \sin(x))(-\sin(x) + 3x^2 - 1) + (8x - \cos(x))(\cos(x) + x^3 - x + 1)$$

2. Find $f'(x)$, do not simplify your answer.

$$f(x) = \frac{4x^2 - \sin(x)}{\cos(x) + x^3 - x + 1}$$

Solution:

$$f'(x) = \frac{(8x - \cos(x))(\cos(x) + x^3 - x + 1) - (4x^2 - \sin(x))(-\sin(x) + 3x^2 - 1)}{(\cos(x) + x^3 - x + 1)^2}$$

3. Find $f'(x)$, do not simplify your answer.

$$f(x) = \frac{\ln(x - 4)(4x^3 + 5x^2 - 6x + 7)}{\sec(x - 7)}$$

Solution:

$$f'(x) = \frac{(\ln(x-4)(4x^3+12x^2+10x-6)+\frac{1}{x^3+5x^2-6x+7})\sec(x-7)\ln(x-4)(4x^3+5x^2-6x+7)\sec(x-7)\tan(x-7)}{\sec^2(x-7)}$$

4. Find $f'(x)$, do not simplify your answer.

$$f(x) = \sqrt[3]{\frac{e^{2x-4}\cos(x)}{x^3\sin(4x+1)}}$$

Solution:

$$f'(x) = \frac{1}{3} \left(\frac{e^{2x-4}\cos(x)}{x^3\sin(4x+1)} \right)^{-\frac{2}{3}} \cdot
\left(\frac{(-e^{2x-4}\sin(x)+2e^{2x-4}\cos(x))(x^3\sin(4x+1)) - (e^{2x-4}\cos(x))(4x^3\cos(4x+1)+3x^2\sin(4x+1))}{(x^3\sin(4x+1))^2} \right)$$

5. Find $f'(x)$, do not simplify your answer.

$$f(x) = (x^2 - x + 3)(x^3 + x + 1)$$

Solution:

$$f'(x) = (x^2 - x + 3)^{x^3 + x + 1} \left(3x^2 + 1 \ln(x^2 - x + 3) + \frac{(x^3 + x + 1)(2x - 1)}{x^2 - x + 3} \right)$$

6. Find $\frac{dy}{dx}$ of

$$xe^y = ye^x$$

Solution:

$$\frac{dy}{dx} = \frac{-e^y + ye^x}{xe^y - e^x}$$
7. Find a general formula for \(f^{(n)}(x) \) of

\[
f(x) = \frac{1}{5x - 1}
\]

Solution:

\[
f^{(n)}(x) = (-1)^n \frac{5^n n!}{(5x - 1)^{n+1}}
\]

8. Derive the formula for \(\frac{d}{dx} (\cot^{-1}(x)) \).

Solution:

\[
y = \cot^{-1}(x)
\]

\[
\cot(y) = x
\]

\[
-\csc^2(y)y' = 1
\]

\[
y' = -\frac{1}{\csc^2(y)}
\]

\[
y' = -\frac{1}{x^2 + 1}
\]

9. Given that a particle’s distance from its starting point is given by \(d = -t^3 + 7t^2 + 4t - 5 \), where \(t \) is in seconds and \(d \) is in feet, when is the velocity of the particle zero and what is the acceleration of the particle at these points?

Solution: The velocity of the particle is zero at \(t = \frac{7 + \sqrt{61}}{3} \) and \(t = \frac{7 - \sqrt{61}}{3} \), the acceleration of the particle at these points is \(-2\sqrt{61}\) and \(2\sqrt{61}\) respectively.