1. (15 Points) Consider the following DFA, A.

(a) Determine if the automaton accepts the following words. Display the sequence of states for each word.
 i. $baabbba$ — SQTRMMMT — not accepted.
 ii. $aaaaa$ — SPQRT — not accepted.
 iii. $abaabb$ — SPRTRMM — accepted.

(b) Is $L(aba^*b^*) \subset L(A)$? Why or why not? — No, aba is not accepted.

(c) Is $\{b^n a^m \mid n, m > 0$ and n and m are even$\} \subset L(A)$? Why or why not? — Yes, the word must start with bb, driving you to R. From there any set of an even number of a’s will return you to R. Any set of b’s will take you to M and from there two a’s will take you back to R.

2. (15 Points) Consider the following NFA, A.

(a) Determine if the automaton accepts the following words. If it does, display the sequence of states that drive the word to an acceptable state.
 i. $aababb$ — accepted — SPTMFRSQFRSFRSQF
 ii. $aabaaa$ — accepted — SPTMFQFRF
 iii. $baba$ — accepted — SRQMF
 iv. $aaaaaa$ — not accepted.

(b) Is $L(baaa(ba)^*) \subset L(A)$? Why or why not? Yes, $baaa$ drives the automaton to F via SRQTMF then from there ba drives you back to F by RQF. In any case you end on a favorable state.
3. (20 Points) Do one (and only one) of the following,

(a) Convert the following NFA to a DFA,

Solution:

(b) Convert the regular expression \((aa^* \cup b^*ab)a^*aabb^*(e \cup a \cup aaa)\) to an NFA,

Solution:
4. (20 Points) Convert the following NFA to a regular expression,

\[ab^*ba^*a \cup (ab^*ba^*a \cup e)(b \cup (b \cup ab^*b)a^*a)(a \cup (b \cup ab^*b)a^*a) \]

Solution: \(ab^*ba^*a \cup (ab^*ba^*a \cup e)(b \cup (b \cup ab^*b)a^*a)(a \cup (b \cup ab^*b)a^*a) \)

5. (20 Points) Minimize the number of states for the following DFA,

Solution: The equivalence class chart and the converted automaton are

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPQRT</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FW</td>
<td>P</td>
<td>Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Q</td>
<td>RT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FW</td>
<td>FW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. (20 Points) Prove that the language \(L = \{ a^n b^m | n, m > 0, n \text{ is even and } t = n/2 \} \) is not regular. Make sure you verify all statements completely.

Solution: Assume that \(L \) is a regular and let \(n \) be the value from the pumping lemma. Let \(w = a^n b^{2n} \), then \(w = xyz \) with \(|xy| \leq n \) and \(y \) non-empty. Thus, \(xy = a^k \) for some \(1 \leq k \leq n \) and so \(y = a^p \) for some \(1 \leq p \leq n \). But \(xy^2z = a^{n+p}b^{2n} \notin L \), which contradicts \(L \) being regular.